Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Exp Bot ; 74(20): 6269-6284, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37343125

RESUMEN

Endoreduplication is the major source of somatic endopolyploidy in higher plants, and leads to variation in cell ploidy levels due to iterative rounds of DNA synthesis in the absence of mitosis. Despite its ubiquitous occurrence in many plant organs, tissues, and cells, the physiological meaning of endoreduplication is not fully understood, although several roles during plant development have been proposed, mostly related to cell growth, differentiation, and specialization via transcriptional and metabolic reprogramming. Here, we review recent advances in our knowledge of the molecular mechanisms and cellular characteristics of endoreduplicated cells, and provide an overview of the multi-scale effects of endoreduplication on supporting growth in plant development. In addition, the effects of endoreduplication in fruit development are discussed, since it is highly prominent during fruit organogenesis where it acts as a morphogenetic factor supporting rapid fruit growth, as illustrated by case of the model fleshy fruit, tomato (Solanum lycopersicum).


Asunto(s)
Endorreduplicación , Frutas , Organogénesis de las Plantas/genética , Ciclo Celular , Mitosis
2.
Plant Cell ; 34(11): 4554-4568, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35972347

RESUMEN

Wounded plant cells can form callus to seal the wound site. Alternatively, wounding can cause adventitious organogenesis or somatic embryogenesis. These distinct developmental pathways require specific cell fate decisions. Here, we identify GhTCE1, a basic helix-loop-helix family transcription factor, and its interacting partners as a central regulatory module of early cell fate transition during in vitro dedifferentiation of cotton (Gossypium hirsutum). RNAi- or CRISPR/Cas9-mediated loss of GhTCE1 function resulted in excessive accumulation of reactive oxygen species (ROS), arrested callus cell elongation, and increased adventitious organogenesis. In contrast, GhTCE1-overexpressing tissues underwent callus cell growth, but organogenesis was repressed. Transcriptome analysis revealed that several pathways depend on proper regulation of GhTCE1 expression, including lipid transfer pathway components, ROS homeostasis, and cell expansion. GhTCE1 bound to the promoters of the target genes GhLTP2 and GhLTP3, activating their expression synergistically, and the heterodimer TCE1-TCEE1 enhances this activity. GhLTP2- and GhLTP3-deficient tissues accumulated ROS and had arrested callus cell elongation, which was restored by ROS scavengers. These results reveal a unique regulatory network involving ROS and lipid transfer proteins, which act as potential ROS scavengers. This network acts as a switch between unorganized callus growth and organized development during in vitro dedifferentiation of cotton cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Reprogramación Celular , Regulación de la Expresión Génica de las Plantas , Gossypium , Organogénesis de las Plantas , Proteínas de Plantas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Gossypium/genética , Gossypium/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Metabolismo de los Lípidos/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Elementos de Facilitación Genéticos , Multimerización de Proteína , Reprogramación Celular/genética , Organogénesis de las Plantas/genética
3.
BMC Plant Biol ; 22(1): 133, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35317749

RESUMEN

BACKGROUND: Reactive oxygen species (ROS) and calcium ions (Ca2+) are representative signals of plant wound responses. Wounding triggers cell fate transition in detached plant tissues and induces de novo root organogenesis. While the hormonal regulation of root organogenesis has been widely studied, the role of early wound signals including ROS and Ca2+ remains largely unknown. RESULTS: We identified that ROS and Ca2+ are required for de novo root organogenesis, but have different functions in Arabidopsis explants. The inhibition of the ROS and Ca2+ signals delayed root development in detached leaves. Examination of the auxin signaling pathways indicated that ROS and Ca2+ did not affect auxin biosynthesis and transport in explants. Additionally, the expression of key genes related to auxin signals during root organogenesis was not significantly affected by the inhibition of ROS and Ca2+ signals. The addition of auxin partially restored the suppression of root development by the ROS inhibitor; however, auxin supplementation did not affect root organogenesis in Ca2+-depleted explants. CONCLUSIONS: Our results indicate that, while both ROS and Ca2+ are key molecules, at least in part of the auxin signals acts downstream of ROS signaling, and Ca2+ acts downstream of auxin during de novo root organogenesis in leaf explants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Organogénesis de las Plantas/genética , Raíces de Plantas/metabolismo
4.
BMC Plant Biol ; 22(1): 97, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246031

RESUMEN

BACKGROUND: Bougainvillea is a popular ornamental plant with brilliant color and long flowering periods. It is widely distributed in the tropics and subtropics. The primary ornamental part of the plant is its colorful and unusual bracts, rich in the stable pigment betalain. The developmental mechanism of the bracts is not clear, and the pathway of betalain biosynthesis is well characterized in Bougainvillea. RESULTS: At the whole-genome level, we found 23,469 protein-coding genes by assembling the RNA-Seq and Iso-Seq data of floral and leaf tissues. Genome evolution analysis revealed that Bougainvillea is related to spinach; the two diverged approximately 52.7 million years ago (MYA). Transcriptome analysis of floral organs revealed that flower development of Bougainvillea was regulated by the ABCE flower development genes; A-class, B-class, and E-class genes exhibited high expression levels in bracts. Eight key genes of the betalain biosynthetic pathway were identified by homologous alignment, all of which were upregulated concurrently with bract development and betalain accumulation during the bract initiation stage of development. We found 47 genes specifically expressed in stamens, including seven highly expressed genes belonging to the pentose and glucuronate interconversion pathways. BgSEP2b, BgSWEET11, and BgRD22 are hub genes and interacted with many transcription factors and genes in the carpel co-expression network. CONCLUSIONS: We assembled protein-coding genes of Bougainvilea, identified the floral development genes, and constructed the gene co-expression network of petal, stamens, and carpel. Our results provide fundamental information about the mechanism of flower development and pigment accumulation in Bougainvillea, and will facilitate breeding of cultivars with high ornamental value.


Asunto(s)
Betalaínas/biosíntesis , Flores/crecimiento & desarrollo , Flores/genética , Nyctaginaceae/crecimiento & desarrollo , Nyctaginaceae/genética , Organogénesis de las Plantas/genética , Pigmentación/genética , Perfilación de la Expresión Génica , Redes y Vías Metabólicas
5.
Plant Physiol ; 188(3): 1563-1585, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34986267

RESUMEN

Arabidopsis (Arabidopsis thaliana) root hairs develop as long tubular extensions from the rootward pole of trichoblasts and exert polarized tip growth. The establishment and maintenance of root hair polarity is a complex process involving the local apical production of reactive oxygen species generated by A. thaliana nicotinamide adenine dinucleotide phosphate (NADPH) oxidase respiratory burst oxidase homolog protein C/ROOT HAIR-DEFECTIVE 2 (AtRBOHC/RHD2). Loss-of-function root hair defective 2 (rhd2) mutants have short root hairs that are unable to elongate by tip growth, and this phenotype is fully complemented by GREEN FLUORESCENT PROTEIN (GFP)-RHD2 expressed under the RHD2 promoter. However, the spatiotemporal mechanism of AtRBOHC/RHD2 subcellular redistribution and delivery to the plasma membrane (PM) during root hair initiation and tip growth are still unclear. Here, we used advanced microscopy for detailed qualitative and quantitative analysis of vesicular compartments containing GFP-RHD2 and characterization of their movements in developing bulges and growing root hairs. These compartments, identified by an independent molecular marker mCherry-VTI12 as the trans-Golgi network (TGN), deliver GFP-RHD2 to the apical PM domain, the extent of which corresponds with the stage of root hair formation. Movements of TGN/early endosomes, but not late endosomes, were affected in the bulging domains of the rhd2-1 mutant. Finally, we revealed that structural sterols might be involved in the accumulation, docking, and incorporation of TGN compartments containing GFP-RHD2 to the apical PM of root hairs. These results help in clarifying the mechanism of polarized AtRBOHC/RHD2 targeting, maintenance, and recycling at the apical PM domain, coordinated with different developmental stages of root hair initiation and growth.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Membrana Celular/metabolismo , Organogénesis de las Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Tricomas/crecimiento & desarrollo , Membrana Celular/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación , Tricomas/genética
6.
Plant Physiol ; 188(1): 425-441, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34730809

RESUMEN

Highly efficient tissue repair is pivotal for surviving damage-associated stress. Plants generate callus upon injury to heal wound sites, yet regulatory mechanisms of tissue repair remain elusive. Here, we identified WUSCHEL-RELATED HOMEOBOX 13 (WOX13) as a key regulator of callus formation and organ adhesion in Arabidopsis (Arabidopsis thaliana). WOX13 belongs to an ancient subclade of the WOX family, and a previous study shows that WOX13 orthologs in the moss Physcomitrium patens (PpWOX13L) are involved in cellular reprogramming at wound sites. We found that the Arabidopsis wox13 mutant is totally defective in establishing organ reconnection upon grafting, suggesting that WOX13 is crucial for tissue repair in seed plants. WOX13 expression rapidly induced upon wounding, which was partly dependent on the activity of an AP2/ERF transcription factor, WOUND-INDUCED DEDIFFERENTIATION 1 (WIND1). WOX13 in turn directly upregulated WIND2 and WIND3 to further promote cellular reprogramming and organ regeneration. We also found that WOX13 orchestrates the transcriptional induction of cell wall-modifying enzyme genes, such as GLYCOSYL HYDROLASE 9Bs, PECTATE LYASE LIKEs and EXPANSINs. Furthermore, the chemical composition of cell wall monosaccharides was markedly different in the wox13 mutant. These data together suggest that WOX13 modifies cell wall properties, which may facilitate efficient callus formation and organ reconnection. Furthermore, we found that PpWOX13L complements the Arabidopsis wox13 mutant, suggesting that the molecular function of WOX13 is partly conserved between mosses and seed plants. This study provides key insights into the conservation and functional diversification of the WOX gene family during land plant evolution.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Pared Celular/fisiología , Genes Homeobox , Organogénesis de las Plantas/genética , Regeneración/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo
7.
Plant Physiol ; 188(1): 220-240, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34730814

RESUMEN

Stunted growth in saline conditions is a signature phenotype of the Arabidopsis SALT OVERLY SENSITIVE mutants (sos1-5) affected in pathways regulating the salt stress response. One of the mutants isolated, sos4, encodes a kinase that phosphorylates pyridoxal (PL), a B6 vitamer, forming the important coenzyme pyridoxal 5'-phosphate (PLP). Here, we show that sos4-1 and more recently isolated alleles are deficient in phosphorylated B6 vitamers including PLP. This deficit is concomitant with a lowered PL level. Ionomic profiling of plants under standard laboratory conditions (without salt stress) reveals that sos4 mutants are perturbed in mineral nutrient homeostasis, with a hyperaccumulation of transition metal micronutrients particularly in the root, accounting for stress sensitivity. This is coincident with the accumulation of reactive oxygen species, as well as enhanced lignification and suberization of the endodermis, although the Casparian strip is intact and functional. Further, micrografting shows that SOS4 activity in the shoot is necessary for proper root development. Growth under very low light alleviates the impairments, including salt sensitivity, suggesting that SOS4 is important for developmental processes under moderate light intensities. Our study provides a basis for the integration of SOS4 derived B6 vitamers into plant health and fitness.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Organogénesis de las Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Fosfato de Piridoxal/genética , Fosfato de Piridoxal/metabolismo , Estrés Salino/genética , Tolerancia a la Sal/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación , Raíces de Plantas/genética , Brotes de la Planta/genética
8.
Plant Cell Physiol ; 63(1): 104-119, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34791413

RESUMEN

The synthetic strigolactone (SL) analog, rac-GR24, has been instrumental in studying the role of SLs as well as karrikins because it activates the receptors DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2) of their signaling pathways, respectively. Treatment with rac-GR24 modifies the root architecture at different levels, such as decreasing the lateral root density (LRD), while promoting root hair elongation or flavonol accumulation. Previously, we have shown that the flavonol biosynthesis is transcriptionally activated in the root by rac-GR24 treatment, but, thus far, the molecular players involved in that response have remained unknown. To get an in-depth insight into the changes that occur after the compound is perceived by the roots, we compared the root transcriptomes of the wild type and the more axillary growth2 (max2) mutant, affected in both SL and karrikin signaling pathways, with and without rac-GR24 treatment. Quantitative reverse transcription (qRT)-PCR, reporter line analysis and mutant phenotyping indicated that the flavonol response and the root hair elongation are controlled by the ELONGATED HYPOCOTYL 5 (HY5) and MYB12 transcription factors, but HY5, in contrast to MYB12, affects the LRD as well. Furthermore, we identified the transcription factors TARGET OF MONOPTEROS 5 (TMO5) and TMO5 LIKE1 as negative and the Mediator complex as positive regulators of the rac-GR24 effect on LRD. Altogether, hereby, we get closer toward understanding the molecular mechanisms that underlay the rac-GR24 responses in the root.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoles/genética , Flavonoles/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Organogénesis de las Plantas/genética , Transducción de Señal
9.
Plant Physiol ; 188(1): 490-508, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34726761

RESUMEN

Somatic embryogenesis (SE) represents the most appropriate tool for next-generation breeding methods in woody plants such as grapevine (Vitis vinifera L.). However, in this species, the SE competence is strongly genotype-dependent and the molecular basis of this phenomenon is poorly understood. We explored the genetic and epigenetic basis of SE in grapevine by profiling the transcriptome, epigenome, and small RNAome of undifferentiated, embryogenic, and non-embryogenic callus tissues derived from two genotypes differing in competence for SE, Sangiovese and Cabernet Sauvignon. During the successful formation of embryonic callus, we observed the upregulation of epigenetic-related transcripts and short interfering RNAs in association with DNA hypermethylation at transposable elements in both varieties. Nevertheless, the switch to nonembryonic development matched the incomplete reinforcement of transposon silencing, and the evidence of such effect was more apparent in the recalcitrant Cabernet Sauvignon. Transcriptomic differences between the two genotypes were maximized already at early stage of culture where the recalcitrant variety expressed a broad panel of genes related to stress responses and secondary metabolism. Our data provide a different angle on the SE molecular dynamics that can be exploited to leverage SE as a biotechnological tool for fruit crop breeding.


Asunto(s)
Adaptación Fisiológica/genética , Epigenómica , Organogénesis de las Plantas/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Vitis/crecimiento & desarrollo , Vitis/genética , Células Cultivadas , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Técnicas de Embriogénesis Somática de Plantas
10.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34768785

RESUMEN

The programs associated with embryonic roots (ERs), primary roots (PRs), lateral roots (LRs), and adventitious roots (ARs) play crucial roles in the growth and development of roots in plants. The root functions are involved in diverse processes such as water and nutrient absorption and their utilization, the storage of photosynthetic products, and stress tolerance. Hormones and signaling pathways play regulatory roles during root development. Among these, auxin is the most important hormone regulating root development. The target of rapamycin (TOR) signaling pathway has also been shown to play a key role in root developmental programs. In this article, the milestones and influential progress of studying crosstalk between auxin and TOR during the development of ERs, PRs, LRs and ARs, as well as their functional implications in root morphogenesis, development, and architecture, are systematically summarized and discussed.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Serina-Treonina Quinasas TOR/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Organogénesis de las Plantas/genética , Fotosíntesis , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal
11.
Plant Physiol ; 186(4): 2093-2110, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618110

RESUMEN

Parasitic plants reduce crop yield worldwide. Dodder (Cuscuta campestris) is a stem parasite that attaches to its host, using haustoria to extract nutrients and water. We analyzed the transcriptome of six C. campestris tissues and identified a key gene, LATERAL ORGAN BOUNDARIES DOMAIN 25 (CcLBD25), as highly expressed in prehaustoria and haustoria. Gene coexpression networks from different tissue types and laser-capture microdissection RNA-sequencing data indicated that CcLBD25 could be essential for regulating cell wall loosening and organogenesis. We employed host-induced gene silencing by generating transgenic tomato (Solanum lycopersicum) hosts that express hairpin RNAs to target and down-regulate CcLBD25 in the parasite. Our results showed that C. campestris growing on CcLBD25 RNAi transgenic tomatoes transited to the flowering stage earlier and had reduced biomass compared with C. campestris growing on wild-type (WT) hosts, suggesting that parasites growing on transgenic plants were stressed due to insufficient nutrient acquisition. We developed an in vitro haustorium system to assay the number of prehaustoria produced on strands from C. campestris. Cuscuta campestris grown on CcLBD25 RNAi tomatoes produced fewer prehaustoria than those grown on WT tomatoes, indicating that down-regulating CcLBD25 may affect haustorium initiation. Cuscuta campestris haustoria growing on CcLBD25 RNAi tomatoes exhibited reduced pectin digestion and lacked searching hyphae, which interfered with haustorium penetration and formation of vascular connections. The results of this study elucidate the role of CcLBD25 in haustorium development and might contribute to developing parasite-resistant crops.


Asunto(s)
Cuscuta/genética , Regulación de la Expresión Génica de las Plantas , Organogénesis de las Plantas/genética , Proteínas de Plantas/genética , Cuscuta/crecimiento & desarrollo
12.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638958

RESUMEN

The development of above-ground lateral organs is initiated at the peripheral zone of the shoot apical meristem (SAM). The coordination of cell fate determination and the maintenance of stem cells are achieved through a complex regulatory network comprised of transcription factors. Two AP2/ERF transcription factor family genes, ESR1/DRN and ESR2/DRNL/SOB/BOL, regulate cotyledon and flower formation and de novo organogenesis in tissue culture. However, their roles in post-embryonic lateral organ development remain elusive. In this study, we analyzed the genetic interactions among SAM-related genes, WUS and STM, two ESR genes, and one of the HD-ZIP III members, REV, whose protein product interacts with ESR1 in planta. We found that esr1 mutations substantially enhanced the wus and stm phenotypes, which bear a striking resemblance to those of the wus rev and stm rev double mutants, respectively. Aberrant adaxial-abaxial polarity is observed in wus esr1 at relatively low penetrance. On the contrary, the esr2 mutation partially suppressed stm phenotypes in the later vegetative phase. Such complex genetic interactions appear to be attributed to the distinct expression pattern of two ESR genes because the ESR1 promoter-driving ESR2 is capable of rescuing phenotypes caused by the esr1 mutation. Our results pose the unique genetic relevance of ESR1 and the SAM-related gene interactions in the development of rosette leaves.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Homeodominio/genética , Meristema/crecimiento & desarrollo , Meristema/genética , Organogénesis de las Plantas/genética , Factores de Transcripción/genética , Mutación , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo
13.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576034

RESUMEN

Crown roots are essential for plants to obtain water and nutrients, perceive environmental changes, and synthesize plant hormones. In this study, we identified and characterized short crown root 8 (scr8), which exhibited a defective phenotype of crown root and vegetative development. Temperature treatment showed that scr8 was sensitive to temperature and that the mutant phenotypes were rescued when grown under low temperature condition (20 °C). Histological and EdU staining analysis showed that the crown root formation was hampered and that the root meristem activity was decreased in scr8. With map-based cloning strategy, the SCR8 gene was fine-mapped to an interval of 126.4 kb on chromosome 8. Sequencing analysis revealed that the sequence variations were only found in LOC_Os08g14850, which encodes a CC-NBS-LRR protein. Expression and inoculation test analysis showed that the expression level of LOC_Os08g14850 was significantly decreased under low temperature (20 °C) and that the resistance to Xanthomonas oryzae pv. Oryzae (Xoo) was enhanced in scr8. These results indicated that LOC_Os08g14850 may be the candidate of SCR8 and that its mutation activated the plant defense response, resulting in a crown root growth defect.


Asunto(s)
Organogénesis de las Plantas/genética , Oryza/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/genética , Mutación/genética , Oryza/crecimiento & desarrollo , Oryza/microbiología , Fenotipo , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/genética , Temperatura , Xanthomonas/genética , Xanthomonas/patogenicidad
14.
Nat Plants ; 7(8): 1143-1159, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34253868

RESUMEN

The appearance of plant organs mediated the explosive radiation of land plants, which shaped the biosphere and allowed the establishment of terrestrial animal life. The evolution of organs and immobile gametes required the coordinated acquisition of novel gene functions, the co-option of existing genes and the development of novel regulatory programmes. However, no large-scale analyses of genomic and transcriptomic data have been performed for land plants. To remedy this, we generated gene expression atlases for various organs and gametes of ten plant species comprising bryophytes, vascular plants, gymnosperms and flowering plants. A comparative analysis of the atlases identified hundreds of organ- and gamete-specific orthogroups and revealed that most of the specific transcriptomes are significantly conserved. Interestingly, our results suggest that co-option of existing genes is the main mechanism for evolving new organs. In contrast to female gametes, male gametes showed a high number and conservation of specific genes, which indicates that male reproduction is highly specialized. The expression atlas capturing pollen development revealed numerous transcription factors and kinases essential for pollen biogenesis and function.


Asunto(s)
Embryophyta/crecimiento & desarrollo , Embryophyta/genética , Perfilación de la Expresión Génica , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/genética , Organogénesis de las Plantas/genética , Reproducción/genética , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genotipo , Organogénesis de las Plantas/fisiología , Fenotipo , Proteínas de Plantas/metabolismo , Reproducción/fisiología , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo
15.
Mol Plant ; 14(8): 1362-1378, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34062316

RESUMEN

Postembryonic organogenesis is critical for plant development. Underground, lateral roots (LRs) form the bulk of mature root systems, yet the ontogeny of the LR primordium (LRP) is not clear. In this study, we performed the single-cell RNA sequencing through the first four stages of LR formation in Arabidopsis. Our analysis led to a model in which a single group of precursor cells, with a cell identity different from their pericycle origins, rapidly reprograms and splits into a mixed ground tissue/stem cell niche fate and a vascular precursor fate. The ground tissue and stem cell niche fates soon separate and a subset of more specialized vascular cells form sucrose transporting phloem cells that appear to connect to the primary root. We did not detect cells resembling epidermis or root cap, suggesting that outer tissues may form later, preceding LR emergence. At this stage, some remaining initial precursor cells form the primordium flanks, while the rest create a reservoir of pluripotent cells that are able to replace the LR if damaged. Laser ablation of the central and lateral LRP regions showed that remaining cells restart the sequence of tissue initiation to form a LR. Collectively, our study reveals an ontological hierarchy for LR formation with an early and sequential split of main root tissues and stem cells.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Organogénesis de las Plantas/genética , Desarrollo de la Planta/genética , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/citología , Raíces de Plantas/citología , Análisis de Secuencia de ARN , Células Madre/citología
16.
Plant J ; 107(5): 1513-1532, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34181801

RESUMEN

De novo shoot organogenesis is an important biotechnological tool for fundamental studies in plant. However, it is difficult in most bamboo species, and the genetic control of this highly dynamic and complicated regeneration process remains unclear. In this study, based on an in-depth analysis at the cellular level, the shoot organogenesis from calli of Ma bamboo (Dendrocalamus latiflorus Munro) was divided into five stages. Subsequently, single-molecule long-read isoform sequencing of tissue samples pooled from all five stages was performed to generate a full-length transcript landscape. A total of 83 971 transcripts, including 73 209 high-quality full-length transcripts, were captured, which served as an annotation reference for the subsequent RNA sequencing analysis. Time-course transcriptome analysis of samples at the abovementioned five stages was conducted to investigate the global gene expression atlas showing genome-wide expression of transcripts during the course of bamboo shoot organogenesis. K-means clustering analysis and stage-specific transcript identification revealed important dynamically expressed transcription regulators that function in bamboo shoot organogenesis. The majority of abiotic stress-responsive genes altered their expression levels during this process, and further experiments demonstrated that exogenous application of moderate but not severe abiotic stress increased the shoot regeneration efficiency. In summary, our study provides an overview of the genetic flow dynamics during bamboo shoot organogenesis. Full-length cDNA sequences generated in this study can serve as a valuable resource for fundamental and applied research in bamboo in the future.


Asunto(s)
Bambusa/genética , Organogénesis de las Plantas/genética , Estrés Fisiológico , Transcriptoma , Bambusa/crecimiento & desarrollo , Bambusa/fisiología , ADN Complementario/genética , Perfilación de la Expresión Génica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , ARN de Planta/genética , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917959

RESUMEN

Lateral root (LR) formation is an example of a plant post-embryonic organogenesis event. LRs are issued from non-dividing cells entering consecutive steps of formative divisions, proliferation and elongation. The chromatin remodeling protein PICKLE (PKL) negatively regulates auxin-mediated LR formation through a mechanism that is not yet known. Here we show that PKL interacts with RETINOBLASTOMA-RELATED 1 (RBR1) to repress the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) promoter activity. Since LBD16 function is required for the formative division of LR founder cells, repression mediated by the PKL-RBR1 complex negatively regulates formative division and LR formation. Inhibition of LR formation by PKL-RBR1 is counteracted by auxin, indicating that, in addition to auxin-mediated transcriptional responses, the fine-tuned process of LR formation is also controlled at the chromatin level in an auxin-signaling dependent manner.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , ADN Helicasas/metabolismo , Organogénesis de las Plantas/genética , Desarrollo de la Planta/genética , Raíces de Plantas/fisiología , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Transducción de Señal
18.
J Plant Physiol ; 260: 153412, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33845341

RESUMEN

Flowering plants display a vast diversity of flowering time and inflorescence architecture, which plays an important role in determining seed yield and fruit production. However, the molecular mechanism underlying the flowering control and compound inflorescence development, especially in legumes, remain to be elucidated. Here, we reported the identification of MtFDa, an essential regulator of flowering in the model legume Medicago truncatula. Mutation of MtFDa, led to the late flowering, abnormal secondary inflorescences as well as severe floral organ defects. Biochemical and molecular analyses revealed that MtFDa physically interacts with M. truncaula FLOWERING LOCUS T homolog, MtFTa1, a key regulator of Medicago flowering time, and this interaction facilitates MtFDa's function in activating the expression of MtSOC1a. Moreover, we demonstrated that MtFDa may affect secondary inflorescence development via regulating MtFULc expression in M. truncatula. Our findings help elucidate the mechanism of MtFDa-mediated regulation of flowering time and inflorescence development and provide insights into understanding the genetic regulatory network underlying complex productive development in legumes.


Asunto(s)
Flores/crecimiento & desarrollo , Medicago truncatula/genética , Proteínas de Plantas/genética , Flores/genética , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Medicago truncatula/crecimiento & desarrollo , Meristema/genética , Meristema/crecimiento & desarrollo , Organogénesis de las Plantas/genética , Proteínas de Plantas/metabolismo
19.
Plant Sci ; 306: 110854, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33775360

RESUMEN

Many tuber and storage root crops owing to their high nutritional values offer high potential to overcome food security issues. The lack of information regarding molecular mechanisms that govern belowground storage organ development (except a tuber crop, potato) has limited the application of biotechnological strategies for improving storage crop yield. Phytohormones like gibberellin and cytokinin are known to play a crucial role in governing potato tuber development. Another phytohormone, auxin has been shown to induce tuber initiation and growth, and its crosstalk with gibberellin and strigolactone in a belowground modified stem (stolon) contributes to the overall potato tuber yield. In this review, we describe the crucial role of auxin biology in development of potato tubers. Considering the emerging reports from commercially important storage root crops (sweet potato, cassava, carrot, sugar beet and radish), we propose the function of auxin and related gene regulatory network in storage root development. The pattern of auxin content of stolon during various stages of potato tuber formation appears to be consistent with its level in various developmental stages of storage roots. We have also put-forward the potential of three-way interaction between auxin, strigolactone and mycorrhizal fungi in tuber and storage root development. Overall, we propose that auxin gene regulatory network and its crosstalk with other phytohormones in stolons/roots could govern belowground tuber and storage root development.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Organogénesis de las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/metabolismo , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Organogénesis de las Plantas/genética , Tubérculos de la Planta/genética , Plantas Modificadas Genéticamente , Solanum tuberosum/genética
20.
Genes (Basel) ; 12(2)2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673064

RESUMEN

The ability to restore or replace injured tissues can be undoubtedly named among the most spectacular achievements of plant organisms. One of such regeneration pathways is organogenesis, the formation of individual organs from nonmeristematic tissue sections. The process can be triggered in vitro by incubation on medium supplemented with phytohormones. Cytokinins are a class of phytohormones demonstrating pleiotropic effects and a powerful network of molecular interactions. The present study reviews existing knowledge on the possible sequence of molecular and genetic events behind de novo shoot organogenesis initiated by cytokinins. Overall, the review aims to collect reactions encompassed by cytokinin primary responses, starting from phytohormone perception by the dedicated receptors, to transcriptional reprogramming of cell fate by the last module of multistep-phosphorelays. It also includes a brief reminder of other control mechanisms, such as epigenetic reprogramming.


Asunto(s)
Proteínas de Arabidopsis/genética , Citocininas/genética , Organogénesis de las Plantas/genética , Brotes de la Planta/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Reguladores del Crecimiento de las Plantas/genética , Brotes de la Planta/crecimiento & desarrollo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...